Advances of crystal field theory and exchange charge model
https://doi.org/10.26907/mrsej-19405
Abstract
A short overview of the exchange charge model of crystal field is given. Several most important applications of the model to the calculations of the crystal field parameters, energy levels of impurity ions, parameters of the electron-vibrational interaction and transition intensities supported by the recent literature publications are discussed.
About the Authors
M. G. BrikChina
Chongqing 400065; W. Ostwald Str. 1, Tartu 50411, Estonia; Armii Krajowej 13/15, Czȩstochowa PL-42200, Poland
N. M. Avram
Romania
Bd. V. Parvan, No. 4, Timisoara 300223; Independentei 54, Bucharest 050094
C. N. Avram
Romania
Bd. V. Parvan, No. 4, Timisoara 300223
References
1. Bethe H. Ann. Physik 3, 133 (1929)
2. Van Vleck J. Phys. Rev. 41, 208 (1932)
3. Stevens K.W.H. Proc. Phys. Soc. A 65, 209 (1952)
4. Judd B.R. Proc. Royal Soc. A 232, 458 (1955); ibid 241, 414 (1957)
5. Liu G.K., in: Spectroscopic Properties of Rare Earth in Optical Materials, edited by G.K. Liu,
6. B. Jacquier, p. 1, Springer, New York (2005)
7. Su P., Ma C.-G., Brik M.G., Srivastava A.M. Opt. Mater. 79, 129 (2018)
8. Newman D.J. Adv. Phys. 20, 197 (1971)
9. Newman D.J., Ng B. Rep. Prog. Phys. 52, 699 (1989)
10. Yeung Y.Y., in: Optical Properties of 3d-Ions in Crystals: Spectroscopy and Crystal Field Analysis, edited by N.M. Avram, M.G. Brik, Ch. 3, p. 95, Springer and Tsinghua University Press (2013)
11. Malkin B.Z., Crystal Field and Electron-Phonon Interaction in Rare-Earth Ionic Paramagnets, in: Spectroscopy of Solids Containing Rare-Earth Ions, edited by A.A. Kaplyanskii, B.M. Macfarlane, p. 13, North Holland, Amsterdam (1987)
12. Abragam A.G., Bleaney B. Electron Paramagnetic Resonance of Transition Ions, Oxford University Press, Oxford, Clarendon (1970)
13. Brik M.G., Avram N.M. AIP Conf. Proc. 1131, 86 (2009)
14. Jousseaume C., Vivien D., Kahn-Harari A., Malkin B.Z. Opt. Mater. 24, 143 (2003)
15. Brik M.G., Avram N.M., Avram C.N., Rudowicz C., Yeung Y.Y., Gnutek P. J. Alloys Compds. 432, 61 (2007)
16. Medić M.M., Brik M.G., Drazic G., Antic Z., Lojpur V.M., Dramicanin M.D. J. Phys. Chem. C 119, 724 (2015)
17. Brik M.G., Srivastava A.M. J. Lumin. 132, 579 (2012)
18. Srivastava A.M., Brik M.G. Opt. Mater. 35, 1544 (2013)
19. Klimin S.A., Pytalev D.S., Popova M.N., Malkin B.Z., Vanyunin M.V., Korableva S.L. Phys. Rev. B 81, 045113 (2010)
20. Shakurov G.S., Vanyunin M.V., Malkin B.Z., Barbara B., Abdulsabirov R.Y., Korableva S.L. Appl. Magn. Res. 28, 251 (2005)
21. Popova M.N., Klimin S.A., Malkin B.Z., Kasatkina L.A., Cao G., Crow J. Phys. Lett. A 223, 308 (1996)
22. Popova M.N., Klimin S.A., Chukalina E.P., Malkin B.Z., Leviitin R.Z., Mill B.V., Antic-Fidancev E. Phys. Rev. B 68, 155103 (2003)
23. Popova M.N., Chukalina E.P., Malkin B.Z., Iskhakova A.I., Antic-Fidancev E., Porcher P., Chaminade J.P. Phys. Rev. B 63, 075103 (2001)
24. Klekovkina V.V., Malkin B.Z. Opt. Spectr. 116, 849 (2014)
25. Malkin B.Z., Lummen T.T.A., van Loosdrecht P.H.M., Dhalenne G., Zakirov A.R. J. Phys.: Condens. Matter 22, 276003 (2010)
26. Popova M.N., Chukalina E.P., Stanislavchuk T.N., Malkin B.Z., Zakirov A.R., Antic-Fidancev E., Popova E.A., Bezmaternykh L.N., Temerov V.L. Phys. Rev. B 75, 224435 (2007)
27. Kirm M., Stryganyuk G., Vielhauer S., Zimmerer G., Makhov V.N., Malkin B.Z., Solovyev O.V., Abdulsabirov R.Y., Korableva S.L. Phys. Rev. B 75, 075111 (2007)
28. Makhov V.N., Kirm M., Struganyuk G., Vielhauer S., Zimmerer G., Malkin B.Z., Solovyev O.V., Korableva S.L. J. Lumin. 132, 418 (2012)
29. Malkin B.Z., Solovyev O.V., Malishev A.Y., Saikin S.K. J. Lumin. 125, 175 (2007)
30. Brik M.G., Avram C.N. J. Lumin. 102-103, 283 (2003)
31. Brik M.G., Avram N.M. J. Phys.: Condens. Matter 21, 155502 (2009)
32. Avram N.M., Brik M.G., Kityk I.V. Opt. Mater. 32, 1668 (2010)
33. Brik M.G., Avram C.N. J. Lumin. 131, 2642 (2011)
34. Brik M.G., Yeung Y.Y. J. Phys. Chem. Solids 69, 2401 (2008)
Review
For citations:
Brik M.G., Avram N.M., Avram C.N. Advances of crystal field theory and exchange charge model. Magnetic Resonance in Solids. 2019;21(4):19405 (6 pp.). https://doi.org/10.26907/mrsej-19405