Preview

Magnetic Resonance in Solids

Advanced search

Quantum computation of the lowest-energy Kramers states and magnetic g-factors of rare earth ions in crystals

https://doi.org/10.26907/mrsej-23204

Abstract

We present the results of the quantum calculation of the ground state energies and magnetic g-factors of two rare earth (RE) ions: Yb3+ in Y2Ti2O7 crystal and Er3+ in YPO4 crystal. The Variational Quantum Eigensolver (VQE) algorithm has been performed on 5-qubit IBM superconducting quantum computers via IBM Quantum Experience cloud access. The Hamiltonian of the lowest spectroscopic multiplet of each RE ion, containing crystal field and Zeeman interaction, has been projected onto the collective states of three (Yb3+) and four (Er3+) coupled transmon qubits. The lowest-energy states of RE ions have been found by minimizing the mean energy in ∼ 250 - 350 iterations of the algorithm: the first part was performed on a quantum simulator, and the last 25 iterations were conducted on the real quantum computing hardware. All the calculated ground-state energies and magnetic g-factors agree well with their exact values, while the estimated error of 2÷15% is mostly attributed to the decoherence associated with the two-qubit operations

About the Authors

K. M. Makushin
Kazan Federal University
Russian Federation

Kremlevskaya 18, Kazan 420008



E. I. Baibekov
Kazan Federal University
Russian Federation

Kremlevskaya 18, Kazan 420008



References

1. Cohen E., Tamir B., International Journal of Quantum Information 12, 1430002 (2014).

2. “Ibm quantum experience,” https://quantum-computing.ibm.com (2023).

3. “Rigetti computing,” https://qcs.rigetti.com/request-access (2023).

4. Arute F., Arya K., Babbush R., Bacon D., Bardin J. C., Barends R., Biswas R., Boixo S., Brandao F. G., Buell D. A., et al., Nature 574, 505 (2019).

5. Preskill J., Quantum 2, 79 (2018).

6. Cervera-Lierta A., Quantum 2, 114 (2018).

7. Zhukov A., Remizov S., Pogosov W., Lozovik Y. E., Quantum Information Processing 17, 223 (2018).

8. O’Malley P. J., Babbush R., Kivlichan I. D., Romero J., McClean J. R., Barends R., Kelly J., Roushan P., Tranter A., Ding N., et al., Physical Review X 6, 031007 (2016).

9. Abragam A., Bleaney B., Electron paramagnetic resonance of transition ions (OUP Oxford, 2012).

10. Gardner J. S., Gingras M. J., Greedan J. E., Reviews of Modern Physics 82, 53 (2010).

11. Batulin R., Cherosov M., Gilmutdinov G., Kiiamov A., Klekovkina V., Malkin B., Rodionov A., Yusupov R., Magn. Reson. Solids 21, 19601 (2019).

12. Popova M., Klimin S., Moiseev S., Gerasimov K., Minnegaliev M., Baibekov E., Shakurov G., Bettinelli M., Chou M., Physical Review B 99, 235151 (2019).

13. Aleksandrowicz G., Alexander T., Barkoutsos P., Bello L., Ben-Haim Y., Bucher D., Cabrera-Hern´andez F. J., Carballo-Franquis J., Chen A., Chen C.-F., Chow J. M., C´orcolesGonzales A. D., Cross A. J., Cross A., Cruz-Benito J., Culver C., Gonz´alez S. D. L. P., Torre E. D. L., Ding D., Dumitrescu E., Duran I., Eendebak P., Everitt M., Sertage I. F., Frisch A., Fuhrer A., Gambetta J., Gago B. G., Gomez-Mosquera J., Greenberg D., Hamamura I., Havlicek V., Hellmers J., Herok L., Horii H., Hu S., Imamichi T., Itoko T., JavadiAbhari A., Kanazawa N., Karazeev A., Krsulich K., Liu P., Luh Y., Maeng Y., Marques M., Mart´ın-Fern´andez F. J., McClure D. T., McKay D., Meesala S., Mezzacapo A., Moll N., Rodr´ıguez D. M., Nannicini G., Nation P., Ollitrault P., O’Riordan L. J., Paik H., P´erez J., Phan A., Pistoia M., Prutyanov V., Reuter M., Rice J., Davila A. R., Rudy R. H. P., Ryu M., Sathaye N., Schnabel C., Schoute E., Setia K., Shi Y., Silva A., Siraichi Y., Sivarajah S., Smolin J. A., Soeken M., Takahashi H., Tavernelli I., Taylor C., Taylour P., Trabing K., Treinish M., Turner W., Vogt-Lee D., Vuillot C., Wildstrom J. A., Wilson J., Winston E., Wood C., Wood S., W¨orner S., Akhalwaya I. Y., Zoufal C., “Qiskit: An open-source framework for quantum computing,” https://zenodo.org/record/2562111.

14. Gambetta J. M., Chow J. M., Steffen M., npj Quantum Information 3, 1 (2017).

15. Kjaergaard M., Schwartz M. E., Braum¨uller J., Krantz P., Wang J. I.-J., Gustavsson S., Oliver W. D., Annual Review of Condensed Matter Physics 11 (2019).

16. Abrams D. S., Lloyd S., Physical Review Letters 79, 2586 (1997).

17. Aspuru-Guzik A., Dutoi A. D., Love P. J., Head-Gordon M., Science 309, 1704 (2005).

18. Peruzzo A., McClean J., Shadbolt P., Yung M.-H., Zhou X.-Q., Love P. J., Aspuru-Guzik A., O’brien J. L., Nature communications 5, 4213 (2014).

19. Yung M.-H., Casanova J., Mezzacapo A., Mcclean J., Lamata L., Aspuru-Guzik A., Solano E., Scientific reports 4, 3589 (2014).

20. Dumitrescu E. F., McCaskey A. J., Hagen G., Jansen G. R., Morris T. D., Papenbrock T., Pooser R. C., Dean D. J., Lougovski P., Physical review letters 120, 210501 (2018).

21. Ryabinkin I. G., Yen T.-C., Genin S. N., Izmaylov A. F., Journal of chemical theory and computation 14, 6317 (2018).

22. Bian T., Murphy D., Xia R., Daskin A., Kais S., Molecular Physics 117, 2069 (2019).

23. Kandala A., Mezzacapo A., Temme K., Takita M., Brink M., Chow J. M., Gambetta J. M., Nature 549, 242 (2017).

24. Nielsen M. A., Chuang I. L., Quantum computation and quantum information (Cambridge university press, 2010).

25. Fischer S. A., Gunlycke D., arXiv preprint arXiv:1907.01493 (2019).

26. Gokhale P., Angiuli O., Ding Y., Gui K., Tomesh T., Suchara M., Martonosi M., Chong F. T., arXiv preprint arXiv:1907.13623 (2019).

27. Bondarenko D., Feldmann P., Physical Review Letters 124, 130502 (2020).


Review

For citations:


Makushin K.M., Baibekov E.I. Quantum computation of the lowest-energy Kramers states and magnetic g-factors of rare earth ions in crystals. Magnetic Resonance in Solids. 2023;25(2):23204(11 pp.). https://doi.org/10.26907/mrsej-23204

Views: 30


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-5981 (Online)