The optical and magnetic properties of CeO2 nanoparticles doped with Er3+ ions
https://doi.org/10.26907/mrsej-24211
Abstract
The EPR spectroscopy and magnetization measurements were used to study the effect of annealing conditions on the local structure of Er3+ ions in CeO2 : 1% Er3+ nanoparticles. The nanoparticles were synthesized using the coprecipitation technique from an aqueous solution of cerium nitrate and hexamethylenetetramine.
A correlation was found between the EPR spectra of the Er3+ ions, magnetization and luminescence, depending on the annealing atmosphere, which proved the crucial role of oxygen vacancies in the origin of magnetism in CeO2 nanoparticles.
EPR lines due to trigonal centers were clearly detected in CeO2 : 1% Er3+ nanoparticles annealed in a vacuum, while no such lines were found for similar nanoparticles annealed under argon or air atmospheres.
About the Authors
M. S. PudovkinRussian Federation
Kazan 420008
O. A. Morozov
Russian Federation
Kazan 420008
Kazan 420029
S. L. Korableva
Russian Federation
Kazan 420008
R. M. Rakhmatullin
Russian Federation
Kazan 420008
V. V. Semashko
Russian Federation
Kazan 420008
Kazan 420029
A. K. Ginkel
Russian Federation
Kazan 420008
A. A. Rodionov
Russian Federation
Kazan 420008
A. G. Kiiamov
Russian Federation
Kazan 420008
Kazan 420029
References
1. Sun C., Li H., Chen L., Energy Environ. Sci. 5, 8475 (2012).
2. Ahn S.-Y., Jang W.-J., Shim J.-O., Jeon B.-H., Roh H.-S., Catal. Rev. , 1 (2023).
3. Walkey C., Das S., Seal S., Erlichman J., Heckman K., Ghibelli L., Traversa E., McGinnis J. F., Self W. T., Environ. Sci.: Nano 2, 33 (2015).
4. Rubio L., Marcos R., Hern´andez A., Chem.-Biol. Interact. 291, 7 (2018).
5. Thakur N., Manna P., Das J., J. Nanobiotech. 17, 84 (2019).
6. Casals E., Zeng M., Parra-Robert M., Fern´andez-Varo G., Morales-Ruiz M., Jimenez W., Puntes V., Casals G., Small 16, 1907322 (2020).
7. Kusmierek E., Catalysts 10, 1435 (2020).
8. Gupta K. K., Weng T.-H., Som S., Lu C.-H., Ceram. Internat. 49, 32758 (2023).
9. Trovarelli A., Catal. Rev. 38, 439 (1996).
10. Skorodumova N. V., Simak S. I., Lundqvist B. I., Abrikosov I. A., Johansson B., Phys. Rev. Lett. 89, 166601 (2002).
11. Shehata N., Meehan K., Hudait M., Jain N., J. Nanopart. Res. 14, 1173 (2012).
12. Soni S., Kumar S., Dalela B., Kumar S., Alvi P. A., Dalela S., J. Alloys and Comp. 752, 520 (2018).
13. D’Angelo A. M., Liu A. C. Y., Chaffee A. L., J. Phys. Chem. C 120, 14382 (2016).
14. Guo M., Lu J., Wu Y., Wang Y., Luo M., Langmuir 27, 3872 (2011).
15. Schmitt R., Nenning A., Kraynis O., Korobko R., Frenkel A. I., Lubomirsky I., Haile S. M., Rupp J. L. M., Chem. Soc. Rev. 49, 554 (2020).
16. Pudovkin M. S., Morozov O. A., Korableva S. L., Rakhmatullin R. M., Semashko V. V., Ginkel A. K., Rodionov A. A., Kiiamov A. G., Ceram. Internat. 50, 9263 (2024).
17. Rakhmatullin R. M., Kurkin I. N., Pavlov V. V., Semashko V. V., Phys. Status Solid. (b) 251, 1545 (2014).
18. Chen P.-L., Chen I.-W., J. Amer. Ceram. Soc. 76, 1577 (1993).
19. Zhang F., Jin Q., Chan S.-W., J. Appl. Phys. 95, 4319 (2004).
20. Polezhaeva O. S., Yaroshinskaya N. V., Ivanov V. K., Inorg. Mater. 44, 51 (2008).
21. Momma K., Izumi F., J. Appl. Crystall. 44, 1272 (2011).
22. Holzwarth U., Gibson N., Nature Nanotech. 6, 534 (2011).
23. Yang Y., Cong Y., Dong D. P., Xiao Y., Shang J. Y., Tong Y., Zhang H. M., He M., Zhang J. H., J. Lumin. 213, 427 (2019).
24. Rakhmatullin R. M., Aminov L. K., Kurkin I. N., Poeppl A., Appl. Magn. Res. 46, 741 (2015).
25. Komet Y., Low W., Linares R., Phys. Lett. 19, 473 (1965).
26. Abraham M. M., Weeks R. A., Clark G. W., Finch C. B., Phys. Rev. 148, 350 (1966).
27. Antipin A. A., Zonn Z. N., Ioffe V. A., Katyshev A. N., Shekun L. Y., Sov. Phys. Solid State 9, 521 (1967).
28. Abragam A., Bleaney B., Electron Paramagnetic Resonance of Transition Ions (Clarendon Press, Oxford, 1970) 911 p.
29. Weil J. A., Bolton J. R., Electron paramagnetic resonance: elementary theory and practical applications, 2nd ed. (John Wiley & Sons, Hoboken, New Jersey, 2007) 688 p.
30. Sundaresan A., Bhargavi R., Rangarajan N., Siddesh U., Rao C. N. R., Phys. Rev. B 74, 161306 (2006).
31. Ackland K., Coe J. M. D., Phys. Rep. 746, 1 (2018).
32. Coey J. M. D., Venkatesan M., Fitzgerald C. B., Nature Mater. 4, 173 (2005).
33. Coey J. M. D., Wongsaprom K., Alaria J., Venkatesan M., J. Phys. D 41, 134012 (2008).
34. Coey M., Ackland K., Venkatesan M., Sen S., Nature Phys. 12, 694 (2016).
35. Rakhmatullin R. M., Pavlov V. V., Semashko V. V., Phys. Status Solid. (b) 253, 499 (2018).
36. Morozov O. A., Pavlov V. V., Rakhmatullin R. M., Semashko V. V., Korableva S. L., Phys. Status Solid. (RRL) 12, 1800318 (2018).
37. Rakhmatullin R. M., Semashko V. V., Korableva S. L., Kiiamov A. G., Rodionov A. A., Tschaggelar R., van Bokhoven J. A., Paun C., Material. Chem. Phys. 219, 251 (2018).
Review
For citations:
Pudovkin M.S., Morozov O.A., Korableva S.L., Rakhmatullin R.M., Semashko V.V., Ginkel A.K., Rodionov A.A., Kiiamov A.G. The optical and magnetic properties of CeO2 nanoparticles doped with Er3+ ions. Magnetic Resonance in Solids. 2024;26(2):24211 (9 pp.). https://doi.org/10.26907/mrsej-24211