Preview

Magnetic Resonance in Solids

Advanced search

The optical and magnetic properties of CeO2 nanoparticles doped with Er3+ ions

https://doi.org/10.26907/mrsej-24211

Abstract

The EPR spectroscopy and magnetization measurements were used to study the effect of annealing conditions on the local structure of Er3+ ions in CeO2 : 1% Er3+ nanoparticles. The nanoparticles were synthesized using the coprecipitation technique from an aqueous solution of cerium nitrate and hexamethylenetetramine.

A correlation was found between the EPR spectra of the Er3+ ions, magnetization and luminescence, depending on the annealing atmosphere, which proved the crucial role of oxygen vacancies in the origin of magnetism in CeO2 nanoparticles.

EPR lines due to trigonal centers were clearly detected in CeO2 : 1% Er3+ nanoparticles annealed in a vacuum, while no such lines were found for similar nanoparticles annealed under argon or air atmospheres.

About the Authors

M. S. Pudovkin
Kazan State University
Russian Federation

Kazan 420008



O. A. Morozov
Kazan State University; Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS
Russian Federation

Kazan 420008

Kazan 420029



S. L. Korableva
Kazan State University
Russian Federation

Kazan 420008



R. M. Rakhmatullin
Kazan State University
Russian Federation

Kazan 420008



V. V. Semashko
Kazan State University; Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS
Russian Federation

Kazan 420008

Kazan 420029



A. K. Ginkel
Kazan State University
Russian Federation

Kazan 420008



A. A. Rodionov
Kazan State University
Russian Federation

Kazan 420008



A. G. Kiiamov
Kazan State University; Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS
Russian Federation

Kazan 420008

Kazan 420029



References

1. Sun C., Li H., Chen L., Energy Environ. Sci. 5, 8475 (2012).

2. Ahn S.-Y., Jang W.-J., Shim J.-O., Jeon B.-H., Roh H.-S., Catal. Rev. , 1 (2023).

3. Walkey C., Das S., Seal S., Erlichman J., Heckman K., Ghibelli L., Traversa E., McGinnis J. F., Self W. T., Environ. Sci.: Nano 2, 33 (2015).

4. Rubio L., Marcos R., Hern´andez A., Chem.-Biol. Interact. 291, 7 (2018).

5. Thakur N., Manna P., Das J., J. Nanobiotech. 17, 84 (2019).

6. Casals E., Zeng M., Parra-Robert M., Fern´andez-Varo G., Morales-Ruiz M., Jimenez W., Puntes V., Casals G., Small 16, 1907322 (2020).

7. Kusmierek E., Catalysts 10, 1435 (2020).

8. Gupta K. K., Weng T.-H., Som S., Lu C.-H., Ceram. Internat. 49, 32758 (2023).

9. Trovarelli A., Catal. Rev. 38, 439 (1996).

10. Skorodumova N. V., Simak S. I., Lundqvist B. I., Abrikosov I. A., Johansson B., Phys. Rev. Lett. 89, 166601 (2002).

11. Shehata N., Meehan K., Hudait M., Jain N., J. Nanopart. Res. 14, 1173 (2012).

12. Soni S., Kumar S., Dalela B., Kumar S., Alvi P. A., Dalela S., J. Alloys and Comp. 752, 520 (2018).

13. D’Angelo A. M., Liu A. C. Y., Chaffee A. L., J. Phys. Chem. C 120, 14382 (2016).

14. Guo M., Lu J., Wu Y., Wang Y., Luo M., Langmuir 27, 3872 (2011).

15. Schmitt R., Nenning A., Kraynis O., Korobko R., Frenkel A. I., Lubomirsky I., Haile S. M., Rupp J. L. M., Chem. Soc. Rev. 49, 554 (2020).

16. Pudovkin M. S., Morozov O. A., Korableva S. L., Rakhmatullin R. M., Semashko V. V., Ginkel A. K., Rodionov A. A., Kiiamov A. G., Ceram. Internat. 50, 9263 (2024).

17. Rakhmatullin R. M., Kurkin I. N., Pavlov V. V., Semashko V. V., Phys. Status Solid. (b) 251, 1545 (2014).

18. Chen P.-L., Chen I.-W., J. Amer. Ceram. Soc. 76, 1577 (1993).

19. Zhang F., Jin Q., Chan S.-W., J. Appl. Phys. 95, 4319 (2004).

20. Polezhaeva O. S., Yaroshinskaya N. V., Ivanov V. K., Inorg. Mater. 44, 51 (2008).

21. Momma K., Izumi F., J. Appl. Crystall. 44, 1272 (2011).

22. Holzwarth U., Gibson N., Nature Nanotech. 6, 534 (2011).

23. Yang Y., Cong Y., Dong D. P., Xiao Y., Shang J. Y., Tong Y., Zhang H. M., He M., Zhang J. H., J. Lumin. 213, 427 (2019).

24. Rakhmatullin R. M., Aminov L. K., Kurkin I. N., Poeppl A., Appl. Magn. Res. 46, 741 (2015).

25. Komet Y., Low W., Linares R., Phys. Lett. 19, 473 (1965).

26. Abraham M. M., Weeks R. A., Clark G. W., Finch C. B., Phys. Rev. 148, 350 (1966).

27. Antipin A. A., Zonn Z. N., Ioffe V. A., Katyshev A. N., Shekun L. Y., Sov. Phys. Solid State 9, 521 (1967).

28. Abragam A., Bleaney B., Electron Paramagnetic Resonance of Transition Ions (Clarendon Press, Oxford, 1970) 911 p.

29. Weil J. A., Bolton J. R., Electron paramagnetic resonance: elementary theory and practical applications, 2nd ed. (John Wiley & Sons, Hoboken, New Jersey, 2007) 688 p.

30. Sundaresan A., Bhargavi R., Rangarajan N., Siddesh U., Rao C. N. R., Phys. Rev. B 74, 161306 (2006).

31. Ackland K., Coe J. M. D., Phys. Rep. 746, 1 (2018).

32. Coey J. M. D., Venkatesan M., Fitzgerald C. B., Nature Mater. 4, 173 (2005).

33. Coey J. M. D., Wongsaprom K., Alaria J., Venkatesan M., J. Phys. D 41, 134012 (2008).

34. Coey M., Ackland K., Venkatesan M., Sen S., Nature Phys. 12, 694 (2016).

35. Rakhmatullin R. M., Pavlov V. V., Semashko V. V., Phys. Status Solid. (b) 253, 499 (2018).

36. Morozov O. A., Pavlov V. V., Rakhmatullin R. M., Semashko V. V., Korableva S. L., Phys. Status Solid. (RRL) 12, 1800318 (2018).

37. Rakhmatullin R. M., Semashko V. V., Korableva S. L., Kiiamov A. G., Rodionov A. A., Tschaggelar R., van Bokhoven J. A., Paun C., Material. Chem. Phys. 219, 251 (2018).


Review

For citations:


Pudovkin M.S., Morozov O.A., Korableva S.L., Rakhmatullin R.M., Semashko V.V., Ginkel A.K., Rodionov A.A., Kiiamov A.G. The optical and magnetic properties of CeO2 nanoparticles doped with Er3+ ions. Magnetic Resonance in Solids. 2024;26(2):24211 (9 pp.). https://doi.org/10.26907/mrsej-24211

Views: 62


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-5981 (Online)