Preview

Magnetic Resonance in Solids

Advanced search

DFT study of magnetic order in Fe-Al-based ternary alloys

https://doi.org/10.26907/mrsej-25101

Abstract

In this study, we utilized quantum-mechanical calculations to explore the electronic structure of binary and ternary Fe-Al-based systems with noncollinear magnetic configurations. Our findings indicate that the ground state of systems, such as Fe9Al7, Fe9Al6B, Fe9Al6Ga, and Fe9Ga6, is not ferromagnetic, but rather exhibits a spin spiral structure in the [111] direction. We analyzed the effects of different types of exchange-correlation potentials, aluminum concentration, relaxation of interatomic distances, substituting atom positions, and spin wave orientations on magnetic properties. Various exchange-correlation potentials consistently demonstrated the dependency of the total energy on the spin spiral q-vector, with the generalized gradient approximation closely matching experimental observations. In the Fe9Al7 unit cell, a spin spiral structure prevails at 43.75% atomic Al, while other compositions favor ferromagnetism. The system can support spin spiral vectors in the [001], [110], and [111] directions, with [111] being the most energetically favorable. The equilibrium state is highly sensitive to the position and type of sp-elements within the unit cell. Overall, our results show that spin spiral structures with the [111] q-vector are energetically favored when the average magnetic moment is approximately 1 μB per Fe atom, which is consistent with Mössbauer data

About the Authors

A. F. Abdullin
Kazan Federal University
Russian Federation

Kazan 420008



E. V. Voronina
Kazan Federal University
Russian Federation

Kazan 420008



References

1. Arrott A., Sato H., Physical Review 114, 1420 (1959).

2. Danan H., Gengnagel H., Journal of Applied Physics 39, 678 (1968).

3. Cable J. V., David L., Parra R., Physical Review B: Solid State 16, 1132 (1977).

4. Shukla P., Wortis M., Physical Review B: Condensed Matter 21, 159 (1980).

5. Shull R. D., Okamoto H., Beck P. A., Solid State Communications 20, 863 (1976).

6. Bao W., Raymond S., Shapiro S. M., Motoya K., Fak B., Erwin R. W., Physical Review Letters 82, 4711 (1999).

7. Noakes D. R., Adroja D. T., Rainford B. D., Bud'ko S. L., Physical Review Letters 91, 217201 (2003).

8. Noakes D. R., Rainford B. D., Adroja D. T., Kockelmann W., Bud'ko S. L., Caneld P. C., Journal of Applied Physics 95, 6574 (2004).

9. Bogner J., Ziebeck K. R. A., Baron A. Q. R., Schuster K., Physical Review B 58, 14922 (1998).

10. Kulikov N. I., Postnikov A. V., Borstel G., Braun J., Physical Review B 59, 6824 (1999).

11. Kaptas D., Svab E., Somogyvari Z., Andre G., Kiss L. F., Balogh J., Bujdoso L., Kemeny T., Vincze I., Physical Review B 73, 012401 (2006).

12. Wilfong B., Sharma V., Naphyetal J., Journal of Alloys and Compounds 894, 162421 (2022).

13. Wu Y., Ning Z., Cao H., Cao G., Benavides K. A., Karna S., McCandless G. T., Jin R.,

14. Chan J. Y., Shelton W. A., DiTusa J. F., Scientic Reports 8, 5225 (2018).

15. Tanveer M., Ruiz-Daz P., Pastor G. M., Physical Review B 94, 094403 (2016).

16. Grytsiuk S., Romhanyi N., Gondolf K., Bouaziz J., Bouhassoune M., Schena T., Meyerheim H. L., Szunyogh L., Blugel S., Mokrousov Y., Physical Review B 100, 214406 (2019).

17. Loh G. C., Gan C. K., AIP Advances 7, 055704 (2017).

18. Abdullin A. F., Voronina E. V., Dobysheva L. V., Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki 162, 455 (2020), [in Russian].

19. Voronina E. V., Al'Saedi A. K., Ivanova A. G., Arzhnikov A. K., Dulov E. N., Physica Status Solidi A 120, 1213 (2019).

20. Voronina E. V., Arzhnikov A. K., Chumakov A. I., Chistyakova N. I., Ivanova A. G., Pyataev A. V., Korolev A. V., Advances in Condensed Matter Physics 2018, 5781873 (2018).

21. Voronina E. V., Ivanova A. G., Arzhnikov A. K., Chumakov A. I., Chistyakova N. I., Pyataev A. V., Korolev A. V., Physics of the Solid State 60, 730 (2018).

22. Laskowski R., K. M. G., Blaha P., Schwarz K., Physical Review B 69, 140408 (2004).

23. Blaha P., Schwarz K., Madsen G. K. H., Kvasnicka D., Luitz J., Laskowski R., Tran F., Marks L. D., WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (2018).

24. Blaha P., Schwarz K., Tran F., Laskowski R., Madsen G. K. H., Marks L. D., The Journal of Chemical Physics 152, 074101 (2020).

25. Perdew J. P., Burke K., Ernzerhof M., Physical Review Letters 77, 3865 (1996).

26. Comtesse D., Herper H. C., Hucht A., Entel P., The European Physical Journal B 85, 1 (2012).

27. Matyunina M., Zagrebin M., Sokolovskiy V., Buchelnikov V., EPJ Web of Conferences 185, 04013 (2018).

28. Hou Z., Takagiwa Y., Shinohara Y., Xu Y., Tsuda K., Journal of Physics: Condensed Matter 33, 195501 (2021).

29. Andersen O. K., Madsen J., Poulsen U. K., Jepsen O., Kollar J., Physica B+C 86, 249 (1977).

30. Kubler J., Physics Letters A 81, 81 (1981).

31. Shiga M., IEEE Translation Journal on Magnetics in Japan 6, 1039 (1991).

32. Arzhnikov A. K., Dobysheva L. V., Brauers F., Physics of the Solid State 42, 89 (2000).

33. Voronina E. V., Abdullin A. F., Ivanova A. G., Dobysheva L. V., Korolev A. V., Arzhnikov A. K., Journal of Experimental and Theoretical Physics 136, 89 (2023).

34. Matsnev M. E., Rusakov V. S., AIP Conference Proceedings 1489, 178 (2012).

35. Ageev A. L., Voronina E. V., Journal of Nuclear Instruments and Methods B 108, 417 (1996).

36. Yelsukov E. P., Konygin G. N., Voronina E. V., Izvestiya Rossiiskoi Akademii Nauk. Seriya Fizicheskaya 56, 119 (1992), [in Russian].

37. Yelsukov E. P., Voronina E. V., Konygin G. N., Barinov V. A., Godovikov S. K., Dorofeev G. A., Zagainov A. V., Journal of Magnetism and Magnetic Materials 166, 334 (1997).


Review

For citations:


Abdullin A.F., Voronina E.V. DFT study of magnetic order in Fe-Al-based ternary alloys. Magnetic Resonance in Solids. 2025;27(1):25101 (14 pp.). https://doi.org/10.26907/mrsej-25101

Views: 86


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-5981 (Online)