Preview

Magnetic Resonance in Solids

Advanced search

Anisotropy of the Magnetic Properties of GdTiO3 Single Crystal

https://doi.org/10.26907/mrsej-25308

Abstract

GdTiO3 is a prototypical Mott-insulating perovskite that exhibits a rich interplay between spin, orbital, and lattice degrees of freedom. Here we report a systematic study of the magnetic anisotropy of high-quality GdTiO3 single crystal grown by the optical floating-zone technique. Comprehensive magnetization measurements performed with a vibrating-sample magnetometer (5K ≤ T ≤ 70K, |µ0H| ≤ 9T) reveal a pronounced magnetic anisotropy. The ordering temperature is isotropic (TN ≈ 32K), but both the magnetic susceptibility and the spin-flop fields depend strongly on the direction of the applied field (H a,b,c). For each crystallographic orientation three distinct magnetic regimes are identified: ferromagnetic-like low-field phase, ferrimagnetic high-field phase and paramagnetic phase. These findings provide a solid experimental benchmark for theoretical treatments of spin-orbit coupling and anisotropic exchange in rare-earth titanates. Moreover, the sizable magnetic entropy change associated with the field-driven transitions suggests that GdTiO3 could be exploited in solid-state cryogenic refrigeration based on the magnetocaloric effect, offering a potential route to more efficient hydrogen liquefaction.

About the Authors

R. Batulin
Kazan Federal University
Russian Federation

Kazan 420008



M. Cherosov
Kazan Federal University
Russian Federation

Kazan 420008



V. Shustov
Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS
Russian Federation

Kazan 420029



M. Kuznetcov
Kazan Federal University
Russian Federation

Kazan 420008



D. Uvin
Kazan Federal University
Russian Federation

Kazan 420008



I. Romanova
Kazan Federal University
Russian Federation

Kazan 420008



References

1. Turner C. W., Greedan J. E., Journal of Solid State Chemistry 34, 207 (1980).

2. Disa A. S., Curtis J., Fechner M., Liu A., von Hoegen A., Först M., Nova T. F., Narang P., Maljuk A., Boris A. V., Keimer B., Cavalleri A., Nature 617, 73 (2023).

3. Najev A., Pocrnic M., Barisic D., Vojta M., Kuzmin M., et al., Physical Review B 109, 174406 (2024).

4. Grisolia M. N., Bruno F. Y., Sando D., Zhao H. J., Jacquet E., Chen X. M., Bellaiche L., Barthélémy A., Bibes M., Applied Physics Letters 105, 172402 (2014).

5. Omote H., Watanabe S., Matsumoto K., Gilmutdinov I., Kiiamov A., Tayurskii D., Cryogenics 101, 58 (2019).

6. Zhang J. Y., Jackson C. A., Chen R., Raghavan S., Moetakef P., Balents L., Stemmer S., Physical Review B 88, 121104(R) (2013).

7. Yang L. J., Wang H. Y., Wang Y. K., Wan X. G., Journal of Physics: Condensed Matter 26, 476001 (2014).

8. Khalsa G., Benedek N. A., Moses J., npj Quantum Materials 3, 15 (2018).

9. Mochizuki M., Imada M., Journal of the Physical Society of Japan 73, 1833 (2004).

10. Goodenough J. B., Journal of Materials Chemistry 17, 2394 (2007).

11. Amow G., Zhou J. S., Journal of Solid State Chemistry 154, 447 (2000).

12. Hameed S., Barone D., Mehio O., Sr. D. H., Frandsen B., Balents L., Wilson S. D., Physical Review Materials 5, 125003 (2021).

13. Sergienko I. A., Dagotto E., Physical Review B 73, 094434 (2006).

14. Craco L., Laad M. S., Leoni S., Müller-Hartmann E., Physical Review B 77, 075108 (2008).

15. Need R. F., Isaac B. J., Kirby B. J., Borchers J. A., Stemmer S., Wilson S. D., Physical Review Letters 117, 037205 (2016).

16. Garcia-Barriocanal J., Cezar J. C., Bruno F. Y., Thakur P., Brookes N. B., Utfeld C., Rivera-Calzada A., Giblin S. R., Taylor J. W., Duffy J. A., Dugdale S. B., Nakamura T., Kodama K., Leon C., Okamoto S., Santamaria J., Nature Communications 1, 82 (2010).

17. Suzuki T., Yamauchi I., Udagawa M., Goto M., Physica B: Condensed Matter 329–333, 943 (2003).

18. Nabokin P. I., Souptel D., Balbashov A. M., Journal of Crystal Growth 250, 397 (2003).

19. Zhou H. D., Goodenough J. B., Physical Review B 72, 045125 (2005).

20. Turner C. W., Greedan J. E., Journal of Magnetism and Magnetic Materials 38, 29 (1983).

21. Leushin A., Eremin M., J. Exp. Theor. Phys 69, 2190 (1975).

22. Eremin M., Antonova I., Journal of Physics: Condensed Matter 10, 5567 (1998).


Review

For citations:


Batulin R., Cherosov M., Shustov V., Kuznetcov M., Uvin D., Romanova I. Anisotropy of the Magnetic Properties of GdTiO3 Single Crystal. Magnetic Resonance in Solids. 2025;27(3):25308 (7 pp.). https://doi.org/10.26907/mrsej-25308

Views: 67

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-5981 (Online)