Analysis of the thermal treatment effects of gadolinium-containing hydroxyapatite by EPR method
https://doi.org/10.26907/mrsej-23303
Abstract
Hydroxyapatite (HAp)-based materials doped with rare earth elements (REE) have shown applications as biomaterials, lighting emitting materials, scintillating materials, in vivo imaging probes, and thermoluminescent dosimeters. Gadolinium-containing calcium phosphates are promising contrast agents for various bioimaging modalities. In this work, hydroxyapatite materials with gadolinium ion impurities with a 0.44 mol.% concentration were obtained by wet chemical precipitation. Samples after chemical synthesis (as-dried) and heat treatment were studied using electron paramagnetic resonance (EPR) spectroscopy in continuous wave and pulsed modes. Analysis of the EPR spectra made it possible to establish the incorporation of Gd 3+ ions in the structure of HAp in two calcium positions with different parameters of the spin Hamiltonian. Heat treatment of samples at a T = 1300°C leads to a significant change in the EPR spectra of Gd 3+ ions with a decrease of the uncontrolled nitrate anion centers (synthesis by-product) concentration
About the Authors
A. Yu. DeminaRussian Federation
Moscow 119991
N. V. Petrakova
Russian Federation
Moscow 119991
F. F. Murzakhanov
Russian Federation
Kazan 420008
G. V. Mamin
Russian Federation
Kazan 420008
Yu. O. Nikitina
Russian Federation
Moscow 119991
M. A. Sadovnikova
Russian Federation
Kazan 420008
S. O. Andreev
Russian Federation
Peterhof 198504
A. V. Zhukov
Russian Federation
Moscow 125480
M. R. Gafurov
Russian Federation
Kazan 420008
V. S. Komlev
Russian Federation
Moscow 119991
References
1. Hou X., Zhang L., Zhou Z., Luo X., Wang T., Zhao X., Lu B., Chen F., Zheng L., Journal of Functional Biomaterials 13, 187 (2022).
2. Zhou H., Lee J., Acta Biomaterialia 7, 2769 (2011).
3. Prakasam M., Locs J., Salma-Ancane K., Loca D., Largeteau A., Berzina-Cimdina L., Journal of Functional Biomaterials 6, 1099 (2015).
4. Vahabzadeh S., Roy M., Bandyopadhyay A., Bose S., Acta Biomaterialia 17, 47 (2015).
5. Dorozhkin S. V., Biomaterials Science 9, 7748 (2021).
6. Jiang Y., Yuan Z., Huang J., Materials Technology 35, 785 (2020).
7. Ressler A., ˇZuˇzi´c A., Ivaniˇsevi´c I., Kamboj N., Ivankovi´c H., Open Ceramics 6, 100122 (2021).
8. Arcos D., Vallet-Reg´ı M., Journal of Materials Chemistry B 8, 1781 (2020).
9. Ignjatovi´c N. L., Manˇci´c L., Vukovi´c M., Stojanovi´c Z., Nikoli´c M. G., ˇSkapin S., Jovanovi´c S., Veselinovi´c L., Uskokovi´c V., Lazi´c S., Markovi´c S., Lazarevi´c M. M., Uskokovi´c D. P., Scientific Reports 9, 16305 (2019).
10. Neacsu I. A., Stoica A. E., Vasile B. S., Andronescu E., Nanomaterials 9, 239 (2019).
11. Gu M., Li W., Jiang L., Li X., Acta Biomaterialia 148, 22 (2022).
12. Wahsner J., Gale E. M., Rodr´ıguez-Rodr´ıguez A., Caravan P., Chemical Reviews 119, 957 (2018).
13. Liu Y., Tang Y., Tian Y., Wu J., Sun J., Teng Z., Wang S., Lu G., ACS Applied Nano Materials 2, 1194 (2019).
14. Fadeeva I. V., Deyneko D. V., Barbaro K., Davydova G. A., Sadovnikova M. A., Murzakhanov F. F., Fomin A. S., Yankova V. G., Antoniac I. V., Barinov S. M., Lazoryak B. I., Rau J. V., Nanomaterials 12, 852 (2022).
15. Gates-Rector S., Blanton T., Powder Diffraction 34, 352 (2019).
16. Stoll S., Schweiger A., Journal of Magnetic Resonance 178, 42 (2006).
17. Li Y., Ooi C. P., Philip Hong Ning C., Aik Khor K., International Journal of Applied Ceramic Technology 6, 501 (2009).
18. Yasukawa A., Gotoh K., Tanaka H., Kandori K., Colloids and Surfaces A: Physicochemical and Engineering Aspects 393, 53 (2012).
19. Qureshi N., Malkin B., Riberolles S., Ritter C., Ouladdiaf B., Balakrishnan G., Hatnean M. C., Petrenko O., Physical Review B 105, 014425 (2022).
20. Roessler M. M., Salvadori E., Chemical Society Reviews 47, 2534 (2018).
21. Cugunov L., Mednis A., Kliava J., Journal of Physics: Condensed Matter 3, 8017 (1991).
22. Singh V., Devi C. B. A., Rao B., Rao A., Singh N., Mistry B. M., Optik 226, 165932 (2021).
23. Murali A., Chakradhar R. S., Rao J. L., Physica B: Condensed Matter 364, 142 (2005).
24. Szyczewski A., Lis S., Kruczy´nski Z., But S., Journal of Alloys and Compounds 341, 307 (2002).
25. Goldberg M., Gafurov M., Makshakova O., Smirnov V., Komlev V., Barinov S., Kudryavtsev E., Sergeeva N., Achmedova S., Mamin G., Murzakhanov F., Orlinskii S., The Journal of Physical Chemistry B 123, 9143 (2019).
26. Sadovnikova M. A., Murzakhanov F. F., Fadeeva I. V., Forysenkova A. A., Deyneko D. V., Mamin G. V., Gafurov M. R., Ceramics 5, 1154 (2022).
27. McGeehin P., Henderson B., Journal of Physics C: Solid State Physics 7, 3988 (1974).
28. Orbach R., Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 264, 458 (1961).
29. Aime S., Botta M., Terreno E., Advances in Inorganic Chemistry 57, 173 (2005).
30. Gafurov M., Biktagirov T., Mamin G., Orlinskii S., Applied Magnetic Resonance 45, 1189 (2014).
31. Shurtakova D., Mamin G., Gafurov M., Magnetic Resonance in Solids 25, 23201 (2023).
32. Murzakhanov F. F., Grishin P. O., Goldberg M. A., Yavkin B. V., Mamin G. V., Orlinskii S. B., Fedotov A. Y., Petrakova N. V., Antuzevics A., Gafurov M. R., Komlev V. S., Applied Sciences 11, 7727 (2021).
33. Gafurov M., Biktagirov T., Mamin G., Klimashina E., Putlayev V., Kuznetsova L., Orlinskii S., Physical Chemistry Chemical Physics 17, 20331 (2015).
34. Gafurov M. R., Biktagirov T., Mamin G. V., Shurtakova D. V., Klimashina E. S.,
35. Putlyaev V., Orlinskii S. B., Physics of the Solid State 58, 469 (2016).
Review
For citations:
Demina A.Yu., Petrakova N.V., Murzakhanov F.F., Mamin G.V., Nikitina Yu.O., Sadovnikova M.A., Andreev S.O., Zhukov A.V., Gafurov M.R., Komlev V.S. Analysis of the thermal treatment effects of gadolinium-containing hydroxyapatite by EPR method. Magnetic Resonance in Solids. 2023;25(3):23303 (11 pp.). https://doi.org/10.26907/mrsej-23303