This material is prefaced a publication of papers selected at XV International Youth Scientific School "Actual problems of magnetic resonance and its application", Kazan, 22 – 26 October 2012.
Quantum and classical spin dynamics have more similarity than difference in theoretical part. Many processes can be described within general formalism where the type of dynamics became important at final steps only. The lecture is illustrated by consideration of operator perturbation theory and multi-spin resonance transitions.
Cyclosporin A is a highly hydrophobic peptide, but its complex with sodium dodecyl sulphate micelles can be readily dissolved in water. Nuclear magnetic resonance (NMR) investigations of cyclosporin bound to detergent micelles were carried out (including NOE spectroscopy) and yielded internuclear distances for a set of atom pairs. Based on these structural data, conformation of cyclosporin was obtained by means of molecular dynamics simulation.
Temperature and magnetic field dependences of the magnetization of LiHoF4 and LiDyF4 single crystals were measured with a dc-SQUID magnetometer and by the inductance method with the magnetic field applied along and perpendicular to the c-axis. The results of measurements are compared with the results of simulations.
On the basis of the nuclear magnetic resonance (NMR) experiments it was established that molecules of sodium dodecyl sulfate can form micelles in dimethyl sulfoxide solution. The nuclear Overhauser effect between OH-group of cholesterol and "tail" groups of sodium dodecyl sulfate hydrophobic part was observed in 1D selective NOESY experiment. This observation corresponds to close spatial arrangement of these parts of different molecules and the presence of a complex between cholesterol and sodium dodecyl sulfate micelles.
o-Semiquinonato pincer nickel complexes demonstrate different kinds of coordination sphere dynamics depending from the nature of the phosphorus substituents, the rigindess of the linker in the pincer fragment and the nature of the o-semiquinone.