Preview

Magnetic Resonance in Solids

Advanced search
Vol 26, No 1 (2024): SPECIAL ISSUE dedicated to Boris I. Kochelaev's 90th birthday
24101 (8 pp.) 34
Abstract

An effective operator of the interaction of the orbital moment of d-electrons with the magnetic field is derived by combining the method of secondary quantization with the technique of irreducible tensor operators. It is found that in addition to renormalization of the matrix elements of the total orbital momentum L there are new terms in the Hamiltonian of the interaction with the magnetic field. The effects are numerically calculated by the example of the ground term of Fe2+ ions in Fe2Mo2O8. Additional magnetic dipole transitions with ∆M = ±3 and ∆M = ±2 are allowed when the magnetic field is directed along the c-axis of the crystal and in the perpendicular orientation, respectively.

24102 (11 pp.) 33
Abstract

A mini auto-review of relaxation function theory with paramagnon excitations for doped S = 1/2 two-dimensional Heisenberg antiferromagnetic system is given in view of magnetic response of high-Tc copper oxide superconductors as obtained by nuclear magnetic resonance (NMR) and resonant inelastic X-ray scattering (RIXS). It is shown that RIXS data analysis is affected by approximations made for dynamic spin susceptibility and thus depends on paramagnon damping. The results of the theory give fair agreement without especially adjusted parameters to RIXS data for Y-Ba-Cu-O and Nd(La)-Ba(Sr)-Cu-O family compounds.

24103 (11 pp.) 100
Abstract

Hydroxyapatite (HAp) is an attractive material for creating biocompatible implants owing to its osteoregenerative properties, elemental and phase similarity to bone tissue. The flexible structure of the material allows the introduction of ionic impurities to improve physicochemical and biological characteristics while maintaining the space symmetry group. Rare earth ions are a new step in improving compounds to create luminescent bioimaging agent for application in diagnostics imaging medicine. Nanosized powder of HAp doped with cerium ions (Ce-HAp) was obtained in order to study the impurity localization and its oxidizing state with conventional and pulsed electron paramagnetic resonance (EPR) at X-band. Undoped and doped HAp powders were synthesized via precipitation technique. It was revealed, that Ce-HAp powders after synthesis and heating exhibit luminescence in visible wavelength range (380 and 420 nm) that confirms the presence of Ce3+ in HAp structure. Heating of Ce-HAp in the air atmosphere results in formation of CeO2 with low intensity of luminescence. EPR spectra of the doped sample confirms the Ce3+ incorporation into HAp structure. The powder-like EPR lineshape for the obtained powders can be simulated with g = 3.47 and g = 0.51.

24104 (7 pp.) 30
Abstract

In this report, we compare the analysis of electron spin resonance (ESR) studies of Berezinskii-Kosterlitz-Thouless (BKT) correlations in the spin S = 1 Ni2+-based layered honeycomb antiferromagnets BaNi2X2O8 with X = V, P and As. Moreover, we investigate the effect of doping on the BKT correlations by the substitution of Ni2+ by spin S = 1/2 Cu2+ ions in BaNi2V2O8.

24105 (14 pp.) 28
Abstract

This study establishes precise links between the fractional integral of the RL-type and the averaging technique of a smooth function over 1D-fractal sets. These findings were previously reported in the works [1], [2]. To draw in the interest of other experts operating in the NMR/EPR zones, it is helpful to repeat them again. The physical meaning of these acquired formulas is explained and numerical verifications are performed with the purpose of confirming the analytical results. Furthermore, results were achieved for a combination of fractal circuits with a discrete set of fractal dimensions that were generalized. We suppose that these new results help understand deeper the intimate links between fractals and fractional integrals of different types, especially in applications of the fractional operators in complex systems.

24106 (9 pp.) 44
Abstract

The primary benefit of incorporating a ferroelectric material into a complex heterostructure lies in the ability to manipulate various properties of the entire system using an external electric field. Specifically, the electric field can alter the polarization direction within the ferroelectric material, thereby influencing its structural properties. These structural changes, in turn, affect the electronic and magnetic properties of the neighboring material. The interfacial phenomena are of significant interest due to their potential to provide enhanced functionality in next-generation electronic devices. Inspired by the concept of employing ferroelectrics in heterostructure components, this study investigates the two-dimensional electron gas (2DEG) and the impact of ferroelectric polarization direction onto the electronic and magnetic properties. Lastly the presence of magnetoelectric coupling (ME) within the model systems of LaMnO3/BaTiO3 and LaMnO3/PbTiO3 heterostructures using density functional theory calculations was examined.

24107 (10 pp.) 42
Abstract

In this study, we report an experimental attempt to resolve whether ferromagnetism of graphite nanoflakes is an intrinsic phenomenon or it solely originates from impurities. A comparative study of either a nominally undoped or intentionally contaminated with NiO or Gd2O3 samples was performed. We show, first, that a detectable by X-ray diffraction contamination may occur via the agate mortar/pestle working surfaces if prior to sample dispersion it was used for grinding of hard oxides. Second, we find a systematic trend in a development of a FM component of all three samples under vacuum annealing at 400 or 800C. Third, we notice that the samples notably contaminated with NiO or Gd2O3 do not reveal any drastic enhancement in ferromagnetism with respect to the sample free from intentional doping, contrary to an expectation related to nickel and gadolinium oxides reduction to metallic ferromagnetic at room temperature state. As a result, we conclude that ferromagnetism of graphite nanoflakes is probably an intrinsic phenomenon that could be stimulated slightly by NiO or Gd2O3 impurities, though an impact of the agate (SiO2) contamination itself may also play a role.

24108 (6 pp.) 16
Abstract

The electronic structure and optical properties of the MoS2/WS2 planar heterostructure are studied based on density functional theory. Compared with single-layer MoS2 and WS2, the MoS2/WS2 heterostructure has an indirect and very narrow band gap. In the visible region of the light spectrum, the maximum values of dielectric constant, refractive index and attenuation coefficient for MoS2/WS2 are shifted to the blue region of the spectrum.

24109 (9 pp.) 34
Abstract

This article is a brief overview of our recent work on theoretical studies of the interaction of magnetism and superconductivity in nanostructures. General approaches to the analysis of this interaction are discussed and the unified essence of the problem is revealed: the search for new phenomena and effects in such systems. Various aspects of this problem are considered, including proximity effects, solitary superconductivity, and inhomogeneous superconducting states. Approaches based on the properties of the band structure and Fermi surface for ferromagnets and superconductors in contact are considered in the context of predicting possible effects and explaining observed phenomena. The possibilities of further research in this area are discussed in order to expand our understanding of the physics of magnetic superconductors and develop new technologies based on them.

24110 (8 pp.) 24
Abstract

The results of studies of BaFe2As2 single crystals doped with cobalt by means of resistivity and microwave absorption measurement are reported. A theoretical description of the behavior of the microwave absorption amplitude is made taking into account the temperature dependence of resistivity, magnetic susceptibility and the lifetime of spin fluctuations. An assumption has been made that the deviation from the linear dependence of resistivity on temperature at T < 100 K is not related to the electron-electron scattering mechanism, but it is due to the appearance of nematic fluctuations. Estimates of the rate of scattering by spin fluctuations indicate their nematic nature at temperatures near the structural transition.

24111 (9 pp.) 40
Abstract

Two methods for calculating the superconducting transition critical temperature of superconductor / ferromagnetic metal heterostructures in the dirty limit are compared. The first method relies on an approximation where the order parameter is assumed to be constant within each superconducting layer. The second method does not use any approximations and involves a numerical iterative process where the critical temperature and the order parameter distribution are jointly searched for in each iteration. Using these methods, we study various heterostructures involving a ferromagnetic and superconducting layers, including case where the ferromagnetic layer is split into domains.

24112 (7 pp.) 30
Abstract

This work examines the conductivity properties of point contact magnetic tunnel junctions taking into account gradients of the electrochemical potentials at the ferromagnetic metal/dielectric interface. The calculations were carried out for spin-polarized currents at arbitrary ratio the point magnetic tunnel junction size and the mean free paths of conduction electrons under the applied voltage conditions. Current-voltage characteristics were obtained for symmetrical and asymmetrical point junctions.

24113 (8 pp.) 15
Abstract

We analyse the possibility of the appearance of spontaneous currents in proximated superconducting/normal metal (S/N) heterostructure when Cooper pairs penetrate into the normal metal from the superconductor. In particular, we calculate the free energy of the S/N structure. We show that whereas the free energy of the N film FN in the presence of the proximity effect increases compared to the normal state, the total free energy, which includes the boundary term FB, decreases. The condensate current decreases FN, but increases the total free energy making the current-carrying state of the S/N system energetically unfavorable.



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-5981 (Online)